cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321758 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in s(u), where H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions.

This page as a plain text file.
%I A321758 #4 Nov 20 2018 16:31:31
%S A321758 1,1,1,0,-1,1,1,0,0,-1,1,0,1,0,0,0,0,1,-2,1,0,1,-1,0,0,-1,0,1,0,0,1,0,
%T A321758 0,0,0,0,0,1,-1,-1,1,0,1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0,
%U A321758 0,0,0,-1,1,2,-3,1,1,0,0,0,0,0,0,0,0,0,0
%N A321758 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in s(u), where H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions.
%C A321758 Row n has length A000041(A056239(n)).
%C A321758 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321758 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321758 Triangle begins:
%e A321758    1
%e A321758    1
%e A321758    1   0
%e A321758   -1   1
%e A321758    1   0   0
%e A321758   -1   1   0
%e A321758    1   0   0   0   0
%e A321758    1  -2   1
%e A321758    0   1  -1   0   0
%e A321758   -1   0   1   0   0
%e A321758    1   0   0   0   0   0   0
%e A321758    1  -1  -1   1   0
%e A321758    1   0   0   0   0   0   0   0   0   0   0
%e A321758   -1   1   0   0   0   0   0
%e A321758    0  -1   1   0   0   0   0
%e A321758   -1   1   2  -3   1
%e A321758    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
%e A321758    0   1  -1   1  -1   0   0
%e A321758 For example, row 18 gives: s(221) = -h(32) + h(41) + h(221) - h(311).
%Y A321758 Row sums are A010051.
%Y A321758 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A304438, A317552, A317554, A321742-A321765.
%K A321758 sign,tabf
%O A321758 1,19
%A A321758 _Gus Wiseman_, Nov 20 2018