This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321758 #4 Nov 20 2018 16:31:31 %S A321758 1,1,1,0,-1,1,1,0,0,-1,1,0,1,0,0,0,0,1,-2,1,0,1,-1,0,0,-1,0,1,0,0,1,0, %T A321758 0,0,0,0,0,1,-1,-1,1,0,1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0, %U A321758 0,0,0,-1,1,2,-3,1,1,0,0,0,0,0,0,0,0,0,0 %N A321758 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in s(u), where H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions. %C A321758 Row n has length A000041(A056239(n)). %C A321758 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321758 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321758 Triangle begins: %e A321758 1 %e A321758 1 %e A321758 1 0 %e A321758 -1 1 %e A321758 1 0 0 %e A321758 -1 1 0 %e A321758 1 0 0 0 0 %e A321758 1 -2 1 %e A321758 0 1 -1 0 0 %e A321758 -1 0 1 0 0 %e A321758 1 0 0 0 0 0 0 %e A321758 1 -1 -1 1 0 %e A321758 1 0 0 0 0 0 0 0 0 0 0 %e A321758 -1 1 0 0 0 0 0 %e A321758 0 -1 1 0 0 0 0 %e A321758 -1 1 2 -3 1 %e A321758 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A321758 0 1 -1 1 -1 0 0 %e A321758 For example, row 18 gives: s(221) = -h(32) + h(41) + h(221) - h(311). %Y A321758 Row sums are A010051. %Y A321758 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A304438, A317552, A317554, A321742-A321765. %K A321758 sign,tabf %O A321758 1,19 %A A321758 _Gus Wiseman_, Nov 20 2018