This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321759 #5 Nov 20 2018 19:45:45 %S A321759 1,1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0,1,2,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0, %T A321759 0,0,0,1,1,2,1,0 %N A321759 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in h(u), where H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions. %C A321759 Row n has length A000041(A056239(n)). %C A321759 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321759 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321759 Triangle begins: %e A321759 1 %e A321759 1 %e A321759 1 0 %e A321759 1 1 %e A321759 1 0 0 %e A321759 1 1 0 %e A321759 1 0 0 0 0 %e A321759 1 2 1 %e A321759 1 1 1 0 0 %e A321759 1 0 1 0 0 %e A321759 1 0 0 0 0 0 0 %e A321759 1 1 2 1 0 %e A321759 For example, row 12 gives: h(211) = s(4) + s(22) + 2s(31) + s(211). %Y A321759 Row sums are A321757. %Y A321759 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A321742-A321765. %K A321759 nonn,more,tabf %O A321759 1,19 %A A321759 _Gus Wiseman_, Nov 20 2018