A321761 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in s(u), where H is Heinz number, m is monomial symmetric functions, and s is Schur functions.
1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 3, 4, 0, 0, 1, 2, 1, 3, 5, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 0 1 1 1 1 0 1 2 1 1 1 1 1 0 0 1 0 1 0 1 2 0 1 1 2 3 1 1 1 1 1 1 1 0 0 0 1 3 1 1 1 1 1 1 1 1 1 1 1 0 1 1 2 2 3 4 0 0 1 2 1 3 5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 2 5 For example, row 15 gives: s(32) = m(32) + 2m(221) + m(311) + 3m(2111) + 5m(11111).
Links
- Wikipedia, Symmetric polynomial
Crossrefs
Formula
If s(y) = Sum_{|z| = |y|} c(y,z) * m(z), then Sum_{|z| = |y|} c(y,z) * P(z) = A296188(H(y)), where P(y) is the number of distinct permutations of y.
Comments