cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321762 Sum of coefficients of monomial symmetric functions in the Schur function of the integer partition with Heinz number n.

This page as a plain text file.
%I A321762 #5 Nov 20 2018 19:45:59
%S A321762 1,1,2,1,3,3,5,1,4,7,7,4,11,13,12,1,15,8,22,11,30,24,30,5,14,39,9,25,
%T A321762 42,33,56,1,59,64,47,13,77,98,113,16,101,90,135,50,43,150,176,6,53,48,
%U A321762 195,94,231,22,119,41,331,219,297,62,385,322,141,1,250,211
%N A321762 Sum of coefficients of monomial symmetric functions in the Schur function of the integer partition with Heinz number n.
%C A321762 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321762 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321762 The sum of coefficients of s(41) = m(32) + m(41) + 2m(221) + 2m(311) + 3m(2111) + 4m(11111) is a(14) = 13.
%Y A321762 Row sums of A321761.
%Y A321762 Cf. A000085, A008480, A056239, A124794, A124795, A153452, A296150, A296188, A300121, A319193, A321742-A321765.
%K A321762 nonn
%O A321762 1,3
%A A321762 _Gus Wiseman_, Nov 20 2018