This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321763 #4 Nov 20 2018 19:46:06 %S A321763 1,1,1,-1,0,1,1,-1,1,0,1,-2,1,0,-1,1,-1,0,0,1,0,1,0,-1,1,0,-1,1,-1,2, %T A321763 1,-1,0,0,1,-1,1,0,0,0,1,-3 %N A321763 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and s is Schur functions. %C A321763 Row n has length A000041(A056239(n)). %C A321763 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321763 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321763 Triangle begins: %e A321763 1 %e A321763 1 %e A321763 1 -1 %e A321763 0 1 %e A321763 1 -1 1 %e A321763 0 1 -2 %e A321763 1 0 -1 1 -1 %e A321763 0 0 1 %e A321763 0 1 0 -1 1 %e A321763 0 -1 1 -1 2 %e A321763 1 -1 0 0 1 -1 1 %e A321763 0 0 0 1 -3 %e A321763 For example, row 10 gives: m(31) = -s(22) + s(31) - s(211) + 2s(1111). %Y A321763 Row sums are A321764. %Y A321763 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A317554, A321742-A321765. %K A321763 sign,more,tabf %O A321763 1,12 %A A321763 _Gus Wiseman_, Nov 20 2018