cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321764 Sum of coefficients of Schur functions in the monomial symmetric function of the integer partition with Heinz number n.

This page as a plain text file.
%I A321764 #5 Nov 20 2018 19:46:13
%S A321764 1,1,0,1,1,-1,0,1,1,1,1,-2,0,-1,-1,1,1,2
%N A321764 Sum of coefficients of Schur functions in the monomial symmetric function of the integer partition with Heinz number n.
%C A321764 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321764 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321764 The sum of coefficients of m(41) = -s(32) + s(41) + s(221) - s(311) + s(2111) - 2s(11111) is a(14) = -1.
%Y A321764 Row sums of A321763.
%Y A321764 Cf. A000085, A008480, A056239, A082733, A124794, A124795, A153452, A296150, A296188, A300121, A317554, A321742-A321765.
%K A321764 sign,more
%O A321764 1,12
%A A321764 _Gus Wiseman_, Nov 20 2018