cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321765 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and s is Schur functions.

This page as a plain text file.
%I A321765 #4 Nov 20 2018 19:46:19
%S A321765 1,1,1,-1,1,1,1,-1,1,1,0,-1,1,0,-1,1,-1,1,2,1,1,2,-1,-1,1,1,-1,0,0,1,
%T A321765 1,-1,0,0,1,-1,1,1,0,1,-1,-1,1,0,-1,0,0,1,0,0,-1,1,-1,1,0,-1,1,0,0,-1
%N A321765 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and s is Schur functions.
%C A321765 Row n has length A000041(A056239(n)).
%C A321765 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321765 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321765 Triangle begins:
%e A321765    1
%e A321765    1
%e A321765    1  -1
%e A321765    1   1
%e A321765    1  -1   1
%e A321765    1   0  -1
%e A321765    1   0  -1   1  -1
%e A321765    1   2   1
%e A321765    1   2  -1  -1   1
%e A321765    1  -1   0   0   1
%e A321765    1  -1   0   0   1  -1   1
%e A321765    1   0   1  -1  -1
%e A321765    1   0  -1   0   0   1   0   0  -1   1  -1
%e A321765    1   0  -1   1   0   0  -1
%e A321765 For example, row 12 gives: p(211) = s(4) + s(31) - s(211) - s(1111).
%Y A321765 Row sums are A317554.
%Y A321765 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A296561, A300121, A304438, A317552, A317554, A321742-A321765.
%K A321765 sign,tabf,more
%O A321765 1,19
%A A321765 _Gus Wiseman_, Nov 20 2018