This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321765 #4 Nov 20 2018 19:46:19 %S A321765 1,1,1,-1,1,1,1,-1,1,1,0,-1,1,0,-1,1,-1,1,2,1,1,2,-1,-1,1,1,-1,0,0,1, %T A321765 1,-1,0,0,1,-1,1,1,0,1,-1,-1,1,0,-1,0,0,1,0,0,-1,1,-1,1,0,-1,1,0,0,-1 %N A321765 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and s is Schur functions. %C A321765 Row n has length A000041(A056239(n)). %C A321765 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321765 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321765 Triangle begins: %e A321765 1 %e A321765 1 %e A321765 1 -1 %e A321765 1 1 %e A321765 1 -1 1 %e A321765 1 0 -1 %e A321765 1 0 -1 1 -1 %e A321765 1 2 1 %e A321765 1 2 -1 -1 1 %e A321765 1 -1 0 0 1 %e A321765 1 -1 0 0 1 -1 1 %e A321765 1 0 1 -1 -1 %e A321765 1 0 -1 0 0 1 0 0 -1 1 -1 %e A321765 1 0 -1 1 0 0 -1 %e A321765 For example, row 12 gives: p(211) = s(4) + s(31) - s(211) - s(1111). %Y A321765 Row sums are A317554. %Y A321765 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A296561, A300121, A304438, A317552, A317554, A321742-A321765. %K A321765 sign,tabf,more %O A321765 1,19 %A A321765 _Gus Wiseman_, Nov 20 2018