cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321768 Consider the ternary tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the first component of P(n, k).

This page as a plain text file.
%I A321768 #32 Jan 29 2023 04:06:50
%S A321768 3,5,21,15,7,55,45,39,119,77,33,65,35,9,105,91,105,297,187,95,207,117,
%T A321768 57,377,299,217,697,459,175,319,165,51,275,209,115,403,273,85,133,63,
%U A321768 11,171,153,203,555,345,189,429,247,155,987,777,539,1755,1161,429
%N A321768 Consider the ternary tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the first component of P(n, k).
%C A321768 The tree P runs uniquely through every primitive Pythagorean triple.
%C A321768 The ternary tree is built as follows:
%C A321768 - for any n and k such that n > 0 and 0 < k <= 3^(n-1):
%C A321768 - P(n, k) is a column vector,
%C A321768 - P(n+1, 3*k-2) = A * P(n, k),
%C A321768 - P(n+1, 3*k-1) = B * P(n, k),
%C A321768 - P(n+1, 3*k)   = C * P(n, k).
%C A321768 All terms are odd.
%C A321768 Every primitive Pythagorean triple (a, b, c) can be characterized by a pair of parameters (i, j) such that:
%C A321768 - i > j > 0 and gcd(i, j) = 1 and i and j are of opposite parity,
%C A321768 - a = i^2 - j^2,
%C A321768 - b = 2 * i * j,
%C A321768 - c = i^2 + j^2,
%C A321768 - A321782(n, k) and A321783(n, k) respectively give the value of i and of j pertaining to (A321768(n, k), A321769(n, k), A321770(n, k)).
%C A321768 Every primitive Pythagorean triple (a, b, c) can also be characterized by a pair of parameters (u, v) such that:
%C A321768 - u > v > 0 and gcd(u, v) = 1 and u and v are odd,
%C A321768 - a = u * v,
%C A321768 - b = (u^2 - v^2) / 2,
%C A321768 - c = (u^2 + v^2) / 2,
%C A321768 - A321784(n, k) and A321785(n, k) respectively give the value of u and of v pertaining to (A321768(n, k), A321769(n, k), A321770(n, k)).
%H A321768 Rémy Sigrist, <a href="/A321768/b321768.txt">Rows n = 1..9, flattened</a>
%H A321768 Kevin Ryde, <a href="http://user42.tuxfamily.org/triples/index.html">Trees of Primitive Pythagorean Triples</a>, section UAD Tree "row-wise A leg".
%H A321768 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tree_of_primitive_Pythagorean_triples">Tree of primitive Pythagorean triples</a>
%H A321768 <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples</a>
%F A321768 Empirically:
%F A321768 - T(n, 1) = 2*n + 1,
%F A321768 - T(n, (3^(n-1) + 1)/2) = A046727(n),
%F A321768 - T(n, 3^(n-1)) = 4*n^2 - 1.
%e A321768 The first rows are:
%e A321768    3
%e A321768    5, 21, 15
%e A321768    7, 55, 45, 39, 119, 77, 33, 65, 35
%o A321768 (PARI) M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
%o A321768 T(n,k) = my (t=[3;4;5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1,1])
%Y A321768 See A321769 and A321770 for the other components.
%Y A321768 See A322170 for the corresponding areas.
%Y A321768 See A322181 for the corresponding perimeters.
%Y A321768 Cf. A321782, A321783, A321784, A321785.
%Y A321768 Cf. A046727.
%K A321768 nonn,tabf
%O A321768 1,1
%A A321768 _Rémy Sigrist_, Nov 18 2018