cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321769 Consider the tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the second component of P(n, k).

Original entry on oeis.org

4, 12, 20, 8, 24, 48, 28, 80, 120, 36, 56, 72, 12, 40, 88, 60, 208, 304, 84, 168, 224, 44, 176, 336, 180, 456, 696, 220, 288, 360, 52, 140, 252, 120, 252, 396, 136, 132, 156, 16, 60, 140, 104, 396, 572, 152, 340, 460, 96, 468, 884, 464, 1140, 1748, 560, 700
Offset: 1

Views

Author

Rémy Sigrist, Nov 18 2018

Keywords

Comments

The tree P runs uniquely through every primitive Pythagorean triple.
See A321768 for additional comments about P.
All terms are even.

Examples

			The first rows are:
   4
   12, 20, 8
   24, 48, 28, 80, 120, 36, 56, 72, 12
		

Crossrefs

See A321768 and A321770 for the other components.

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[2, 1])

Formula

Empirically:
- T(n, 1) = A046092(n),
- T(n, (3^(n-1) + 1)/2) = A046729(n),
- T(n, 3^(n-1)) = 4 * n.