A321770 Consider the tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the third component of P(n, k).
5, 13, 29, 17, 25, 73, 53, 89, 169, 85, 65, 97, 37, 41, 137, 109, 233, 425, 205, 193, 305, 125, 185, 505, 349, 505, 985, 509, 337, 481, 173, 149, 373, 241, 277, 565, 305, 157, 205, 65, 61, 221, 185, 445, 797, 377, 389, 629, 265, 493, 1325, 905, 1261, 2477
Offset: 1
Examples
The first rows are: 5 13, 29, 17 25, 73, 53, 89, 169, 85, 65, 97, 37
Links
- Rémy Sigrist, Rows n = 1..9, flattened
- Wikipedia, Tree of primitive Pythagorean triples
- Index entries related to Pythagorean Triples
Programs
-
PARI
M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]]; T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[3, 1])
Comments