A321783 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = sqrt((A321770(n, k) - A321768(n, k))/2).
1, 2, 2, 1, 3, 3, 2, 5, 5, 2, 4, 4, 1, 4, 4, 3, 8, 8, 3, 7, 7, 2, 8, 8, 5, 12, 12, 5, 9, 9, 2, 7, 7, 4, 9, 9, 4, 6, 6, 1, 5, 5, 4, 11, 11, 4, 10, 10, 3, 13, 13, 8, 19, 19, 8, 14, 14, 3, 12, 12, 7, 16, 16, 7, 11, 11, 2, 11, 11, 8, 21, 21, 8, 18, 18, 5, 19, 19
Offset: 1
Examples
The first rows are: 1 2, 2, 1 3, 3, 2, 5, 5, 2, 4, 4, 1
Links
- Rémy Sigrist, Rows n = 1..9, flattened
- Kevin Ryde, Trees of Primitive Pythagorean Triples, see section UAD Tree, "row-wise q".
- Robert Saunders and Trevor Randall, The Family Tree of the Pythagorean Triplets Revisited, Mathematical Gazette, item 78.12, volume 78, July 1994, pages 190-193, see page 192 tree terms "n" by columns.
- Index entries related to Pythagorean Triples
Programs
-
PARI
M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]]; T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (sqrtint((t[3, 1] - t[1, 1])/2))
Comments