This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321796 #11 Jan 20 2022 15:59:48 %S A321796 3,17,31,59,997,2837,57349,83773,224813,861743,9999991,61879669, %T A321796 95895673,763137931,1463016067,1608398527,6909512173,38095693807, %U A321796 94041857089,4913845865567 %N A321796 Prime p such that the prime before p is a substring of p^3. %C A321796 10^18-11 and 10^31-27 are also terms. - _Giovanni Resta_, Nov 20 2018 %e A321796 Prime before 3 is 2 and it is a substring of 3^3 = 27. %p A321796 P:=proc(q) local a,n; for n from 2 to q do a:=ithprime(n); %p A321796 if searchtext(convert(prevprime(a),string),convert(a^3,string))>0 %p A321796 then print(a); fi; od; end: P(10^5); %t A321796 sub[x_, y_] := StringPosition @@ ToString /@ {x, y} != {}; p = Prime@ Range@ 100000; p[[Select[Range[2, 100000], sub[p[[#]]^3, p[[# - 1]]] &]]] (* _Giovanni Resta_, Nov 20 2018 *) %t A321796 Select[Prime[Range[700000]],SequenceCount[IntegerDigits[#^3],IntegerDigits[ NextPrime[ #,-1]]]>0&] (* The program generates the first 11 terms of the sequence; to generate all terms, increase the Range constant to 174344399360 but the program will take an extremely long time to run. *) (* _Harvey P. Dale_, Mar 27 2020 *) %o A321796 (Python) %o A321796 from itertools import count, islice %o A321796 from sympy import prevprime, prime %o A321796 def A321796_gen(): return filter(lambda p: str(prevprime(p)) in str(p**3), (prime(n) for n in count(2))) %o A321796 A321796_list = list(islice(A321796_gen(),5)) # _Chai Wah Wu_, Jan 20 2022 %Y A321796 Cf. A052075. %K A321796 nonn,base,more %O A321796 1,1 %A A321796 _Paolo P. Lava_, Nov 19 2018 %E A321796 a(10)-a(20) from _Giovanni Resta_, Nov 20 2018