This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321814 #25 Feb 16 2025 08:33:57 %S A321814 1,1,59050,1,9765626,59050,282475250,1,3486843451,9765626,25937424602, %T A321814 59050,137858491850,282475250,576660215300,1,2015993900450,3486843451, %U A321814 6131066257802,9765626,16680163512500,25937424602,41426511213650,59050 %N A321814 Sum of 10th powers of odd divisors of n. %H A321814 Seiichi Manyama, <a href="/A321814/b321814.txt">Table of n, a(n) for n = 1..10000</a> %H A321814 J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). %H A321814 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OddDivisorFunction.html">Odd Divisor Function</a>. %H A321814 <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>. %F A321814 a(n) = A013958(A000265(n)) = sigma_10(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - _M. F. Hasler_, Nov 26 2018 %F A321814 G.f.: Sum_{k>=1} (2*k - 1)^10*x^(2*k-1)/(1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Dec 07 2018 %F A321814 From _Amiram Eldar_, Nov 02 2022: (Start) %F A321814 Multiplicative with a(2^e) = 1 and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2. %F A321814 Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/22 = 0.045477... . (End) %t A321814 a[n_] := DivisorSum[n, #^10 &, OddQ[#] &]; Array[a, 20] (* _Amiram Eldar_, Dec 07 2018 *) %o A321814 (PARI) apply( A321814(n)=sigma(n>>valuation(n,2),10), [1..30]) \\ _M. F. Hasler_, Nov 26 2018 %o A321814 (Python) %o A321814 from sympy import divisor_sigma %o A321814 def A321814(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),10)) # _Chai Wah Wu_, Jul 16 2022 %Y A321814 Column k=10 of A285425. %Y A321814 Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers). %Y A321814 Cf. A321543 - A321565, A321807 - A321836 for related sequences. %Y A321814 Cf. A000265, A013669, A013958. %K A321814 nonn,mult %O A321814 1,3 %A A321814 _N. J. A. Sloane_, Nov 24 2018