This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321819 #28 Jan 09 2023 01:50:47 %S A321819 1,1024,59050,1048576,9765626,60467200,282475250,1073741824, %T A321819 3486843451,10000001024,25937424602,61918412800,137858491850, %U A321819 289254656000,576660215300,1099511627776,2015993900450,3570527693824,6131066257802,10240001048576 %N A321819 a(n) = Sum_{d|n, n/d odd} d^10 for n > 0. %H A321819 Seiichi Manyama, <a href="/A321819/b321819.txt">Table of n, a(n) for n = 1..10000</a> %H A321819 J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). %H A321819 <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>. %F A321819 G.f.: Sum_{k>=1} k^10*x^k/(1 - x^(2*k)). - _Ilya Gutkovskiy_, Dec 22 2018 %F A321819 From _Amiram Eldar_, Nov 02 2022: (Start) %F A321819 Multiplicative with a(2^e) = 2^(10*e) and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2. %F A321819 Sum_{k=1..n} a(k) ~ c * n^11, where c = 2047*zeta(11)/22528 = 0.090909606... . (End) %F A321819 Dirichlet g.f.: zeta(s)*zeta(s-10)*(1-1/2^s). - _Amiram Eldar_, Jan 09 2023 %t A321819 a[n_] := DivisorSum[n, #^10 &, OddQ[n/#] &]; Array[a, 30] (* _Amiram Eldar_, Nov 26 2018 *) %o A321819 (PARI) apply( A321819(n)=sumdiv(n,d,if(bittest(n\d,0),d^10)), [1..30]) \\ _M. F. Hasler_, Nov 26 2018 %Y A321819 Cf. A321543 - A321565, A321807 - A321836 for related sequences. %Y A321819 Cf. A013669. %K A321819 nonn,mult %O A321819 1,2 %A A321819 _N. J. A. Sloane_, Nov 24 2018