This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321820 #26 Jan 09 2023 01:50:14 %S A321820 1,4096,531442,16777216,244140626,2176786432,13841287202,68719476736, %T A321820 282430067923,1000000004096,3138428376722,8916117225472, %U A321820 23298085122482,56693912379392,129746582562692,281474976710656,582622237229762,1156833558212608 %N A321820 a(n) = Sum_{d|n, n/d odd} d^12 for n > 0. %H A321820 Seiichi Manyama, <a href="/A321820/b321820.txt">Table of n, a(n) for n = 1..10000</a> %H A321820 J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). %H A321820 <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>. %F A321820 G.f.: Sum_{k>=1} k^12*x^k/(1 - x^(2*k)). - _Ilya Gutkovskiy_, Dec 22 2018 %F A321820 From _Amiram Eldar_, Nov 02 2022: (Start) %F A321820 Multiplicative with a(2^e) = 2^(12*e) and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2. %F A321820 Sum_{k=1..n} a(k) ~ c * n^13, where c = 8191*zeta(13)/106496 = 0.0769231... . (End) %F A321820 Dirichlet g.f.: zeta(s)*zeta(s-12)*(1-1/2^s). - _Amiram Eldar_, Jan 09 2023 %t A321820 a[n_] := DivisorSum[n, #^12 &, OddQ[n/#] &]; Array[a, 20] (* _Amiram Eldar_, Nov 02 2022 *) %o A321820 (PARI) apply( A321820(n)=sumdiv(n,d,if(bittest(n\d,0),d^12)), [1..30]) \\ _M. F. Hasler_, Nov 26 2018 %Y A321820 Cf. A321543 - A321565, A321807 - A321836 for related sequences. %Y A321820 Cf. A013671. %K A321820 nonn,mult %O A321820 1,2 %A A321820 _N. J. A. Sloane_, Nov 24 2018