This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321823 #26 Aug 17 2024 10:10:42 %S A321823 1,1,-2186,1,78126,-2186,-823542,1,4780783,78126,-19487170,-2186, %T A321823 62748518,-823542,-170783436,1,410338674,4780783,-893871738,78126, %U A321823 1800262812,-19487170,-3404825446,-2186,6103593751,62748518,-10455572420,-823542 %N A321823 a(n) = Sum_{d|n, d==1 mod 4} d^7 - Sum_{d|n, d==3 mod 4} d^7. %H A321823 Seiichi Manyama, <a href="/A321823/b321823.txt">Table of n, a(n) for n = 1..10000</a> %H A321823 J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). %H A321823 <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>. %F A321823 a(n) = a(A000265(n)). - _M. F. Hasler_, Nov 26 2018 %F A321823 G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)^7*x^(2*k-1)/(1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Dec 06 2018 %F A321823 Multiplicative with a(2^e) = 1, and for an odd prime p, ((p^7)^(e+1)-1)/(p^7-1) if p == 1 (mod 4) and ((-p^7)^(e+1)-1)/(-p^7-1) if p == 3 (mod 4). - _Amiram Eldar_, Sep 27 2023 %F A321823 a(n) = Sum_{d|n} d^7*sin(d*Pi/2). - _Ridouane Oudra_, Aug 17 2024 %t A321823 s[n_, r_] := DivisorSum[n, #^7 &, Mod[#, 4] == r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* _Amiram Eldar_, Nov 26 2018 *) %t A321823 f[p_, e_] := If[Mod[p, 4] == 1, ((p^7)^(e+1)-1)/(p^7-1), ((-p^7)^(e+1)-1)/(-p^7-1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* _Amiram Eldar_, Sep 27 2023 *) %o A321823 (PARI) apply( A321823(n)=sumdiv(n>>valuation(n,2),d,(2-d%4)*d^7), [1..40]) \\ _M. F. Hasler_, Nov 26 2018 %Y A321823 Column k=7 of A322143. %Y A321823 Cf. A321543 - A321565, A321807 - A321836 for similar sequences. %Y A321823 Cf. A000265. %K A321823 sign,easy,mult %O A321823 1,3 %A A321823 _N. J. A. Sloane_, Nov 24 2018