This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321854 #9 Feb 04 2019 07:37:34 %S A321854 1,1,0,1,1,1,0,0,1,0,2,1,0,0,0,0,1,1,3,1,0,2,0,4,1,0,0,0,3,1,0,0,0,0, %T A321854 0,0,1,0,2,2,5,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,1,0,0,0,6,0,6,1,1, %U A321854 3,4,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A321854 Irregular triangle where T(H(u),H(v)) is the number of ways to partition the Young diagram of u into vertical sections whose sizes are the parts of v, where H is Heinz number. %C A321854 Row n has length A000041(A056239(n)). %C A321854 A vertical section is a partial Young diagram with at most one square in each row. %e A321854 Triangle begins: %e A321854 1 %e A321854 1 %e A321854 0 1 %e A321854 1 1 %e A321854 0 0 1 %e A321854 0 2 1 %e A321854 0 0 0 0 1 %e A321854 1 3 1 %e A321854 0 2 0 4 1 %e A321854 0 0 0 3 1 %e A321854 0 0 0 0 0 0 1 %e A321854 0 2 2 5 1 %e A321854 0 0 0 0 0 0 0 0 0 0 1 %e A321854 0 0 0 0 0 4 1 %e A321854 0 0 0 6 0 6 1 %e A321854 1 3 4 6 1 %e A321854 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 %e A321854 0 0 4 10 4 8 1 %e A321854 The 12th row counts the following partitions of the Young diagram of (211) into vertical sections (shown as colorings by positive integers): %e A321854 T(12,7) = 0: %e A321854 . %e A321854 T(12,9) = 2: 1 2 1 2 %e A321854 1 2 %e A321854 2 1 %e A321854 . %e A321854 T(12,10) = 2: 1 2 1 2 %e A321854 2 1 %e A321854 2 1 %e A321854 . %e A321854 T(12,12) = 5: 1 2 1 2 1 2 1 2 1 2 %e A321854 3 2 3 1 3 %e A321854 3 3 2 3 1 %e A321854 . %e A321854 T(12,16) = 1: 1 2 %e A321854 3 %e A321854 4 %t A321854 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321854 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}]; %t A321854 ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; %t A321854 ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&]; %t A321854 Table[With[{y=Reverse[primeMS[n]]},Table[Length[Select[spsu[ptnverts[y],ptnpos[y]],Sort[Length/@#]==primeMS[k]&]],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]],{n,18}] %Y A321854 Cf. A000085, A000110, A007016, A056239, A122111, A153452, A215366, A296188, A300121, A318396, A321719-A321731, A321737, A321738, A321742-A321765. %K A321854 nonn,tabf %O A321854 1,11 %A A321854 _Gus Wiseman_, Nov 19 2018