cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321856 Number of primes of the form 3*m + 2 <= n minus number of primes of the form 3*m + 1 <= n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jianing Song, Nov 20 2018

Keywords

Comments

a(n) is the number of primes <= n that are quadratic nonresidues modulo 3 minus the number of primes <= n that are quadratic residues modulo 3.
Conjecturally infinitely many terms are negative. The earliest negative term is a(608981813029) = -1, see A112632.
In general, assuming the strong form of the Riemann Hypothesis, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod k, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x. This phenomenon is called "Chebyshev's bias". (See Wikipedia link and especially the links in A007350.) [Edited by Peter Munn, Nov 05 2023]

Examples

			Below 100, there are 11 primes congruent to 1 modulo 3 and 13 primes congruent to 2 modulo 3, so a(100) = 13 - 11 = 2.
		

Crossrefs

Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), this sequence (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • PARI
    a(n) = -sum(i=1, n, isprime(i)*kronecker(-3, i))

Formula

a(n) = -Sum_{primes p<=n} Legendre(p,3) = -Sum_{primes p<=n} Kronecker(-3,p) = -Sum_{primes p<=n} A102283(p).
a(n) = A340764(n) - A340763(n). - Jianing Song, May 06 2021