A321857 a(n) = Pi(5,2)(n) + Pi(5,3)(n) - Pi(5,1)(n) - Pi(5,4)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.
0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4
Offset: 1
Keywords
Examples
Pi(5,1)(100) = Pi(5,4)(100) = 5, Pi(5,2)(100) = Pi(5,3)(100) = 7, so a(100) = 7 + 7 - 5 - 5 = 4.
Links
- Wikipedia, Chebyshev's bias
Crossrefs
Programs
-
PARI
a(n) = -sum(i=1, n, isprime(i)*kronecker(5, i))
Formula
a(n) = -Sum_{primes p<=n} Legendre(p,5) = -Sum_{primes p<=n} Kronecker(5,p) = -Sum_{primes p<=n} A080891(p).
Extensions
Edited by Peter Munn, Nov 18 2023
Comments