cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321860 Number of primes congruent to 2, 6, 7, 8, 10 modulo 11 and <= n minus number of primes congruent to 1, 3, 4, 5, 9 modulo 11 and <= n.

This page as a plain text file.
%I A321860 #13 Nov 19 2023 10:23:51
%S A321860 0,1,0,0,-1,-1,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,3,2,2,2,2,2,2,3,3,2,2,2,
%T A321860 2,2,2,1,1,1,1,2,2,3,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,
%U A321860 0,0,0,-1,-1,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2
%N A321860 Number of primes congruent to 2, 6, 7, 8, 10 modulo 11 and <= n minus number of primes congruent to 1, 3, 4, 5, 9 modulo 11 and <= n.
%C A321860 a(n) is the number of primes <= n that are quadratic nonresidues modulo 11 minus the number of primes <= n that are quadratic residues modulo 11.
%C A321860 It seems that there are more negative terms here than in some other sequences mentioned in crossrefs; nevertheless, among the first 10000 terms, only 138 ones are negative.
%C A321860 Please see the comment in A321856 describing "Chebyshev's bias" in the general case.
%H A321860 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a>
%F A321860 a(n) = -Sum_{primes p<=n} Legendre(p,11) = -Sum_{primes p<=n} Kronecker(-11,p) = -Sum_{primes p<=n} A011582(p).
%e A321860 Below 200, there are 20 primes congruent to 1, 3, 4, 5, 9 modulo 11 and 23 primes congruent to 2, 6, 7, 8, 10 modulo 11, so a(200) = 23 - 20 = 3.
%o A321860 (PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(-11, i))
%Y A321860 Cf. A112632.
%Y A321860 Let d be a fundamental discriminant.
%Y A321860 Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: this sequence (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
%Y A321860 Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
%K A321860 sign
%O A321860 1,17
%A A321860 _Jianing Song_, Nov 20 2018