This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321864 #13 Nov 19 2023 10:23:42 %S A321864 -1,0,1,1,0,1,2,3,2,1,2,1,2,1,2,1,2,3,2,1,2,1,2,3,4,5,6,5,4,3,2,3,2,3, %T A321864 2,1,2,1,2,3,2,3,2,1,0,1,0,1,2,3,2,1,2,3,4,3,4,5,4,3,4,5,6,7,8,7,6,5, %U A321864 4,5,6,5,6,5,4,5,4,5,4,5,6,5,4,5,6,5,4 %N A321864 a(n) = A321859(prime(n)). %C A321864 Among the first 10000 terms there are only 13 negative ones, with the earliest one (besides a(1)) being a(5006) = -1. %C A321864 Please see the comment in A321856 describing "Chebyshev's bias" in the general case. %H A321864 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a> %F A321864 a(n) = -Sum_{primes p<=n} Legendre(prime(i),7) = -Sum_{primes p<=n} Kronecker(-7,prime(i)) = -Sum_{i=1..n} A175629(prime(i)). %e A321864 prime(25) = 97. Among the primes <= 97, there are 10 ones congruent to 1, 2, 4 modulo 7 and 14 ones congruent to 3, 5, 6 modulo 7, so a(25) = 14 - 10 = 4. %o A321864 (PARI) a(n) = -sum(i=1, n, kronecker(-7, prime(i))) %Y A321864 Cf. A175629. %Y A321864 Let d be a fundamental discriminant. %Y A321864 Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12). %Y A321864 Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), this sequence (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12). %K A321864 sign %O A321864 1,7 %A A321864 _Jianing Song_, Nov 20 2018