A321867 Numbers k such that 8k+1, 12k+1 and 24k+1 are primes and the last two are also of the form x^2 + 27y^2, so the tetrahedral number T(24k+1) is a Fermat pseudoprime to base 2.
1179, 1274, 1895, 4775, 5304, 5874, 6525, 6639, 13035, 16380, 17424, 18459, 21239, 21584, 21714, 22475, 22715, 22734, 27410, 28304, 29340, 29909, 31755, 32294, 34700, 37700, 41525, 42164, 42929, 42950, 43275, 46415, 47174, 47300, 53364, 57879, 59739, 61194
Offset: 1
Keywords
Examples
1179 is in the sequence since 8*1179+1 = 9433, 12*1179+1 = 14149 = 107^2 + 27*10^2 and 24*1179+1 = 28297 = 163^2 + 27*8^2 are primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
Programs
-
Mathematica
sqQ[n_] := n>0 && IntegerQ[Sqrt[n]]; sqsumQ[n_] := PrimeQ[n] && False =!= Reduce[ x^2 + 27 y^2 == n, {x, y}, Integers]; aQ[n_] := PrimeQ[8n+1] && sqsumQ[12n+1] && sqsumQ[24n+1]; Select[Range[100000], aQ]
Comments