cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321868 Fermat pseudoprimes to base 2 that are octagonal.

Original entry on oeis.org

341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 1398101, 1489665, 1584133, 1690501, 1735841
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A000567.
The corresponding indices of the octagonal numbers are 11, 15, 29, 31, 37, 43, 53, 73, 93, 103, 151, 167, 233, 271, 307, 341, 421, 443, 467, 487, 491, 577, 593, 601, 631, 645, 667, 673, 683, 705, 727, 751, 761, 901, 911, 919, 991, ...
First differs from A216170 at n = 505.

Crossrefs

Programs

  • Mathematica
    oct[n_]:=n(3n-2); Select[oct[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = (n>1) && ispolygonal(n, 8) && !isprime(n) && (Mod(2, n)^n==2); \\ Daniel Suteu, Nov 29 2018