cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321873 Decimal expansion of the sum of reciprocals of repunit numbers base 4, Sum_{k>=1} 3/(4^k - 1).

This page as a plain text file.
%I A321873 #29 Feb 16 2025 08:33:57
%S A321873 1,2,6,3,2,9,3,0,5,8,1,0,0,2,7,1,3,3,1,8,8,7,9,7,2,6,6,3,9,0,3,1,3,9,
%T A321873 1,4,6,8,8,4,3,2,4,0,0,8,9,7,2,3,4,6,2,1,3,8,1,7,7,6,2,3,9,0,1,3,8,3,
%U A321873 1,4,1,1,1,4,6,6,2,1,9,4,0,8,2,5,5,7,1,1,0,5,4,2,7,5,9,5,2,3,8,6,1,7,8,5,3,7,3,3,3,1,6,3,7,0,2,9,6,7,6,3,0,8,9,2,7,1,9,6
%N A321873 Decimal expansion of the sum of reciprocals of repunit numbers base 4, Sum_{k>=1} 3/(4^k - 1).
%C A321873 The sums of reciprocal repunit numbers are related to the Lambert series. A special case is the sum of repunit numbers in base 2, which is known as the Erdős-Borwein constant (A065442).
%H A321873 N. Kurakowa and M. Wakyama, <a href="https://doi.org/10.1090/S0002-9939-03-07025-4">On q-analogues of the Euler Constant and Lerch's limit formula</a>, Proc. AMS 132 (4) (2003) 935, constant gamma(4).
%H A321873 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Erdos-BorweinConstant.html">Erdős-Borwein Constant</a>
%H A321873 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertSeries.html">Lambert Series</a>
%F A321873 Equals 3*L(1/4) = 3 * A248721, where L is the Lambert series.
%F A321873 Equals 3 * Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4.
%e A321873 1.263293058100271331887972663903139146884324008972346213817762390...
%p A321873 evalf[130](sum(3/(4^k-1),k=1..infinity)); # _Muniru A Asiru_, Dec 20 2018
%t A321873 RealDigits[Sum[3/(4^k-1), {k, 1, Infinity}], 10, 120][[1]] (* _Amiram Eldar_, Nov 21 2018 *)
%o A321873 (PARI) suminf(k=1, 3/(4^k-1)) \\ _Michel Marcus_, Nov 20 2018
%Y A321873 Cf. A002450, A065442 (base 2), A321872 (base 3).
%K A321873 nonn,cons
%O A321873 1,2
%A A321873 _A.H.M. Smeets_, Nov 20 2018