This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321886 #5 Nov 20 2018 19:46:26 %S A321886 1,1,-1,0,1,1,1,0,0,-2,-1,0,-1,0,0,0,0,1,1,1,1,1,0,0,0,2,0,1,0,0,1,0, %T A321886 0,0,0,0,0,-3,-2,-2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,-2,0, %U A321886 -1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0 %N A321886 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in f(u), where H is Heinz number, m is monomial symmetric functions, and f is forgotten symmetric functions. %C A321886 Row n has length A000041(A056239(n)). %C A321886 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321886 a(n) is also the coefficient of f(v) in m(u). %H A321886 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321886 Triangle begins: %e A321886 1 %e A321886 1 %e A321886 -1 0 %e A321886 1 1 %e A321886 1 0 0 %e A321886 -2 -1 0 %e A321886 -1 0 0 0 0 %e A321886 1 1 1 %e A321886 1 1 0 0 0 %e A321886 2 0 1 0 0 %e A321886 1 0 0 0 0 0 0 %e A321886 -3 -2 -2 -1 0 %e A321886 -1 0 0 0 0 0 0 0 0 0 0 %e A321886 -2 -1 0 0 0 0 0 %e A321886 -2 0 -1 0 0 0 0 %e A321886 1 1 1 1 1 %e A321886 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A321886 3 1 2 1 0 0 0 %e A321886 For example, row 12 gives: f(211) = -3m(4) - 2m(22) - 2m(31) - m(211). %Y A321886 Row sums are A321887. %Y A321886 Cf. A005651, A008277, A008480, A048994, A056239, A124794, A124795, A135278, A300121, A319193, A321742-A321765. %K A321886 sign,tabf %O A321886 1,10 %A A321886 _Gus Wiseman_, Nov 20 2018