This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321888 #5 Nov 21 2018 09:24:00 %S A321888 1,1,-1,0,1,2,1,0,0,-1,-1,0,-1,0,0,0,0,1,3,6,1,2,0,0,0,1,0,1,0,0,1,0, %T A321888 0,0,0,0,0,-1,-2,-2,-2,0,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,-1,0, %U A321888 -1,0,0,0,0,1,6,4,12,24,1,0,0,0,0,0,0,0,0,0 %N A321888 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of f(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and f is forgotten symmetric functions. %C A321888 Row n has length A000041(A056239(n)). %C A321888 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321888 Up to sign, a(n) is also the coefficient of m(v) in p(u), where m is monomial symmetric functions. %H A321888 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321888 Triangle begins: %e A321888 1 %e A321888 1 %e A321888 -1 0 %e A321888 1 2 %e A321888 1 0 0 %e A321888 -1 -1 0 %e A321888 -1 0 0 0 0 %e A321888 1 3 6 %e A321888 1 2 0 0 0 %e A321888 1 0 1 0 0 %e A321888 1 0 0 0 0 0 0 %e A321888 -1 -2 -2 -2 0 %e A321888 -1 0 0 0 0 0 0 0 0 0 0 %e A321888 -1 -1 0 0 0 0 0 %e A321888 -1 0 -1 0 0 0 0 %e A321888 1 6 4 12 24 %e A321888 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A321888 1 1 2 2 0 0 0 %e A321888 For example, row 12 gives: p(211) = -f(4) - 2f(22) - 2f(31) - 2f(211). %Y A321888 Row sums are A321889. %Y A321888 Cf. A005651, A008277, A008480, A048994, A056239, A124794, A124795, A319182, A319193, A321742-A321765. %K A321888 sign,tabf %O A321888 1,6 %A A321888 _Gus Wiseman_, Nov 20 2018