This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321894 #5 Nov 21 2018 09:24:31 %S A321894 1,1,-1,1,1,0,1,-1,1,-2,1,0,-1,0,1,-1,1,1,0,0,1,1,-1,0,0,2,-1,-1,1,0, %T A321894 1,-1,0,0,1,-1,1,-3,0,1,0,0,-1,0,1,0,0,-1,0,0,1,-1,1,-2,1,1,-1,-1,1,0, %U A321894 -2,2,-1,1,-1,0,0 %N A321894 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in f(u), where H is Heinz number, f is forgotten symmetric functions, and s is Schur functions. %C A321894 Row n has length A000041(A056239(n)). %C A321894 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321894 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321894 Triangle begins: %e A321894 1 %e A321894 1 %e A321894 -1 1 %e A321894 1 0 %e A321894 1 -1 1 %e A321894 -2 1 0 %e A321894 -1 0 1 -1 1 %e A321894 1 0 0 %e A321894 1 1 -1 0 0 %e A321894 2 -1 -1 1 0 %e A321894 1 -1 0 0 1 -1 1 %e A321894 -3 0 1 0 0 %e A321894 -1 0 1 0 0 -1 0 0 1 -1 1 %e A321894 -2 1 1 -1 -1 1 0 %e A321894 -2 2 -1 1 -1 0 0 %e A321894 For example, row 15 gives: f(32) = -2s(5) - s(32) + 2s(41) + s(221) - s(311). %Y A321894 Row sums are A321764. %Y A321894 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A317552, A321742-A321765, A321892. %K A321894 sign,tabf,more %O A321894 1,10 %A A321894 _Gus Wiseman_, Nov 20 2018