cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321895 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in M(u), where H is Heinz number, M is augmented monomial symmetric functions, and p is power sum symmetric functions.

This page as a plain text file.
%I A321895 #4 Nov 21 2018 09:24:38
%S A321895 1,1,1,0,-1,1,1,0,0,-1,1,0,1,0,0,0,0,2,-3,1,-1,1,0,0,0,-1,0,1,0,0,1,0,
%T A321895 0,0,0,0,0,2,-1,-2,1,0,1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,0,1,0,
%U A321895 0,0,0,-6,3,8,-6,1,1,0,0,0,0,0,0,0,0,0,0
%N A321895 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in M(u), where H is Heinz number, M is augmented monomial symmetric functions, and p is power sum symmetric functions.
%C A321895 Row n has length A000041(A056239(n)).
%C A321895 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321895 The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions.
%H A321895 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321895 Triangle begins:
%e A321895    1
%e A321895    1
%e A321895    1   0
%e A321895   -1   1
%e A321895    1   0   0
%e A321895   -1   1   0
%e A321895    1   0   0   0   0
%e A321895    2  -3   1
%e A321895   -1   1   0   0   0
%e A321895   -1   0   1   0   0
%e A321895    1   0   0   0   0   0   0
%e A321895    2  -1  -2   1   0
%e A321895    1   0   0   0   0   0   0   0   0   0   0
%e A321895   -1   1   0   0   0   0   0
%e A321895   -1   0   1   0   0   0   0
%e A321895   -6   3   8  -6   1
%e A321895    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
%e A321895    2  -1  -2   1   0   0   0
%e A321895 For example, row 12 gives: M(211) = 2p(4) - p(22) - 2p(31) + p(211).
%t A321895 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A321895 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321895 Table[Sum[Product[(-1)^(Length[t]-1)*(Length[t]-1)!,{t,s}],{s,Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1,{},primeMS[n]][[i]],{i,PrimeOmega[n]}],Times@@Prime/@Total/@#==m&]}],{n,18},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
%Y A321895 Row sums are A080339.
%Y A321895 Cf. A005651, A008277, A008480, A048994, A056239, A124794, A124795, A319193, A321742-A321765.
%K A321895 sign,tabf
%O A321895 1,18
%A A321895 _Gus Wiseman_, Nov 20 2018