This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321896 #5 Nov 21 2018 09:24:44 %S A321896 1,1,-1,1,0,1,2,-3,1,0,-1,1,-6,3,8,-6,1,0,0,1,0,1,0,-2,1,0,0,2,-3,1, %T A321896 24,-30,-20,15,20,-10,1,0,0,0,-1,1,-120,90,144,40,-15,-90,-120,45,40, %U A321896 -15,1,0,-6,0,3,8,-6,1,0,0,-2,3,2,-4,1,0,0,0,0,1,720 %N A321896 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in e(u) * Product_i u_i!, where H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions. %C A321896 Row n has length A000041(A056239(n)). %C A321896 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321896 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321896 Triangle begins: %e A321896 1 %e A321896 1 %e A321896 -1 1 %e A321896 0 1 %e A321896 2 -3 1 %e A321896 0 -1 1 %e A321896 -6 3 8 -6 1 %e A321896 0 0 1 %e A321896 0 1 0 -2 1 %e A321896 0 0 2 -3 1 %e A321896 24 -30 -20 15 20 -10 1 %e A321896 0 0 0 -1 1 %e A321896 -120 90 144 40 -15 -90 -120 45 40 -15 1 %e A321896 0 -6 0 3 8 -6 1 %e A321896 0 0 -2 3 2 -4 1 %e A321896 0 0 0 0 1 %e A321896 720 -840 -504 -420 630 504 210 280 -105 -210 -420 105 70 -21 1 %e A321896 0 0 0 1 0 -2 1 %e A321896 For example, row 15 gives: 12e(32) = -2p(32) + 3p(221) + 2p(311) - 4p(2111) + p(11111). %Y A321896 Row sums are A036987. %Y A321896 Cf. A005651, A008480, A056239, A124794, A124795, A135278, A319193, A319225, A319226, A321742-A321765, A321897. %K A321896 sign,tabf %O A321896 1,7 %A A321896 _Gus Wiseman_, Nov 20 2018