This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321897 #5 Nov 21 2018 09:24:53 %S A321897 1,1,1,1,0,1,2,3,1,0,1,1,6,3,8,6,1,0,0,1,0,1,0,2,1,0,0,2,3,1,24,30,20, %T A321897 15,20,10,1,0,0,0,1,1,120,90,144,40,15,90,120,45,40,15,1,0,6,0,3,8,6, %U A321897 1,0,0,2,3,2,4,1,0,0,0,0,1,720,840,504,420,630 %N A321897 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where H is Heinz number, h is homogeneous symmetric functions, and p is power sum symmetric functions. %C A321897 Row n has length A000041(A056239(n)). %C A321897 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321897 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321897 Triangle begins: %e A321897 1 %e A321897 1 %e A321897 1 1 %e A321897 0 1 %e A321897 2 3 1 %e A321897 0 1 1 %e A321897 6 3 8 6 1 %e A321897 0 0 1 %e A321897 0 1 0 2 1 %e A321897 0 0 2 3 1 %e A321897 24 30 20 15 20 10 1 %e A321897 0 0 0 1 1 %e A321897 120 90 144 40 15 90 120 45 40 15 1 %e A321897 0 6 0 3 8 6 1 %e A321897 0 0 2 3 2 4 1 %e A321897 0 0 0 0 1 %e A321897 720 840 504 420 630 504 210 280 105 210 420 105 70 21 1 %e A321897 0 0 0 1 0 2 1 %e A321897 For example, row 14 gives: 12h(41) = 6p(41) + 3p(221) + 8p(311) + 6p(2111) + p(11111). %Y A321897 Row sums are A321898. %Y A321897 Cf. A005651, A008480, A056239, A124794, A124795, A319193, A321742-A321765, A321896. %K A321897 nonn,tabf %O A321897 1,7 %A A321897 _Gus Wiseman_, Nov 20 2018