A321898 Sum of coefficients of power sums symmetric functions in h(y) * Product_i y_i! where h is homogeneous symmetric functions and y is the integer partition with Heinz number n.
1, 1, 2, 1, 6, 2, 24, 1, 4, 6, 120, 2, 720, 24, 12, 1, 5040, 4, 40320, 6, 48, 120, 362880, 2, 36, 720, 8, 24, 3628800, 12, 39916800, 1, 240, 5040, 144, 4, 479001600, 40320, 1440, 6, 6227020800, 48, 87178291200, 120, 24, 362880, 1307674368000, 2, 576, 36, 10080
Offset: 1
Examples
The sum of coefficients of 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111) is a(15) = 12.
Links
- Wikipedia, Symmetric polynomial.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (PrimePi[p]!)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2023 *)
Comments