cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321898 Sum of coefficients of power sums symmetric functions in h(y) * Product_i y_i! where h is homogeneous symmetric functions and y is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 24, 1, 4, 6, 120, 2, 720, 24, 12, 1, 5040, 4, 40320, 6, 48, 120, 362880, 2, 36, 720, 8, 24, 3628800, 12, 39916800, 1, 240, 5040, 144, 4, 479001600, 40320, 1440, 6, 6227020800, 48, 87178291200, 120, 24, 362880, 1307674368000, 2, 576, 36, 10080
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sum of coefficients of 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111) is a(15) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (PrimePi[p]!)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2023 *)

Formula

Totally multiplicative with a(p) = primepi(p)! = A000142(A000720(p)). - Amiram Eldar, Sep 10 2023