cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321899 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in F(u), where H is Heinz number, F is augmented forgotten symmetric functions, and p is power sum symmetric functions.

This page as a plain text file.
%I A321899 #4 Nov 21 2018 09:25:07
%S A321899 1,1,-1,0,1,1,1,0,0,-1,-1,0,-1,0,0,0,0,2,3,1,1,1,0,0,0,1,0,1,0,0,1,0,
%T A321899 0,0,0,0,0,-2,-1,-2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,-1,0,
%U A321899 -1,0,0,0,0,6,3,8,6,1,1,0,0,0,0,0,0,0,0,0,0
%N A321899 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in F(u), where H is Heinz number, F is augmented forgotten symmetric functions, and p is power sum symmetric functions.
%C A321899 Row n has length A000041(A056239(n)).
%C A321899 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321899 The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.
%H A321899 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321899 Triangle begins:
%e A321899    1
%e A321899    1
%e A321899   -1   0
%e A321899    1   1
%e A321899    1   0   0
%e A321899   -1  -1   0
%e A321899   -1   0   0   0   0
%e A321899    2   3   1
%e A321899    1   1   0   0   0
%e A321899    1   0   1   0   0
%e A321899    1   0   0   0   0   0   0
%e A321899   -2  -1  -2  -1   0
%e A321899   -1   0   0   0   0   0   0   0   0   0   0
%e A321899   -1  -1   0   0   0   0   0
%e A321899   -1   0  -1   0   0   0   0
%e A321899    6   3   8   6   1
%e A321899    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
%e A321899    2   1   2   1   0   0   0
%e A321899 For example, row 12 gives: F(211) = -2p(4) - p(22) - 2p(31) - p(211).
%t A321899 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A321899 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321899 Table[Sum[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*Product[(-1)^(Length[t]-1)*(Length[t]-1)!,{t,s}],{s,Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1,{},primeMS[n]][[i]],{i,PrimeOmega[n]}],Times@@Prime/@Total/@#==m&]}],{n,18},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
%Y A321899 Row sums are A130675, up to sign. Same as A321895, up to sign.
%Y A321899 Cf. A005651, A008277, A008480, A048994, A056239, A124794, A124795, A319193, A321742-A321765.
%K A321899 sign,tabf
%O A321899 1,18
%A A321899 _Gus Wiseman_, Nov 20 2018