cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321900 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in S(u), where H is Heinz number, p is power sum symmetric functions, and S is augmented Schur functions.

This page as a plain text file.
%I A321900 #4 Nov 21 2018 09:25:14
%S A321900 1,1,1,1,-1,1,2,3,1,-1,0,1,6,3,8,6,1,2,-3,1,0,3,-4,0,1,-2,-1,0,2,1,24,
%T A321900 30,20,15,20,10,1,2,-1,0,-2,1,120,90,144,40,15,90,120,45,40,15,1,-6,0,
%U A321900 -5,0,5,5,1,0,-6,4,3,-4,2,1,-6,3,8,-6,1,720,840
%N A321900 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in S(u), where H is Heinz number, p is power sum symmetric functions, and S is augmented Schur functions.
%C A321900 Row n has length A000041(A056239(n)).
%C A321900 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321900 We define the augmented Schur functions to be S(y) = |y|! * s(y) / syt(y), where s is Schur functions and syt(y) is the number of standard Young tableaux of shape y.
%H A321900 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321900 Triangle begins:
%e A321900     1
%e A321900     1
%e A321900     1    1
%e A321900    -1    1
%e A321900     2    3    1
%e A321900    -1    0    1
%e A321900     6    3    8    6    1
%e A321900     2   -3    1
%e A321900     0    3   -4    0    1
%e A321900    -2   -1    0    2    1
%e A321900    24   30   20   15   20   10    1
%e A321900     2   -1    0   -2    1
%e A321900   120   90  144   40   15   90  120   45   40   15    1
%e A321900    -6    0   -5    0    5    5    1
%e A321900     0   -6    4    3   -4    2    1
%e A321900    -6    3    8   -6    1
%e A321900   720  840  504  420  630  504  210  280  105  210  420  105   70   21    1
%e A321900     0    6   -4    3   -4   -2    1
%e A321900 For example, row 15 gives: S(32) = 4p(32) - 6p(41) + 3p(221) - 4p(311) + 2p(2111) + p(11111).
%Y A321900 Row sums are above.
%Y A321900 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A296561, A300121, A304438, A317552, A317554, A321742-A321765.
%K A321900 sign,tabf
%O A321900 1,7
%A A321900 _Gus Wiseman_, Nov 20 2018