This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321907 #12 Nov 25 2018 13:08:37 %S A321907 1,1,2,0,6,0,24,0,0,0,120,0,720,0,0,0,5040,0,40320,0,0,0,362880,0,0,0, %T A321907 0,0,3628800,0,39916800,0,0,0,0,0,479001600,0,0,0,6227020800,0, %U A321907 87178291200,0,0,0,1307674368000,0,0,0,0,0,20922789888000,0,0,0,0,0 %N A321907 If n > 1 is the k-th prime number, then a(n) = k!, otherwise a(n) = 0. %C A321907 1 is taken to be the zeroth prime number. %C A321907 a(n) is the sum of coefficients of power sums symmetric functions in |y|! * s(y) / syt(y), where y is the integer partition with Heinz number n, s is Schur functions, and syt(y) is the number of standard Young tableaux of shape y. %t A321907 Table[If[n==1,1,If[PrimeQ[n],PrimePi[n]!,0]],{n,40}] %o A321907 (PARI) a(n) = if (n==1, 1, if (isprime(n), primepi(n)!, 0)); \\ _Michel Marcus_, Nov 23 2018 %Y A321907 Row sums of A321900. %Y A321907 Cf. A000085, A049084, A056239, A082733, A124795, A153452, A296150, A296188, A296561, A300121, A304438, A317552, A317554, A321742-A321765, A321908. %K A321907 nonn %O A321907 1,3 %A A321907 _Gus Wiseman_, Nov 21 2018