This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321912 #5 Nov 22 2018 18:17:30 %S A321912 1,0,1,1,2,0,0,1,0,1,3,1,3,6,0,0,0,0,1,0,1,0,2,6,0,0,0,1,4,0,2,1,5,12, %T A321912 1,6,4,12,24,0,0,0,0,0,0,1,0,0,0,0,0,1,5,0,0,0,1,0,3,10,0,0,1,5,2,12, %U A321912 30,0,0,0,2,1,7,20,0,1,3,12,7,27,60,1,5 %N A321912 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in e(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions. %C A321912 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321912 Also the coefficient of f(v) in h(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions. %H A321912 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321912 Tetrangle begins (zeroes not shown): %e A321912 (1): 1 %e A321912 . %e A321912 (2): 1 %e A321912 (11): 1 2 %e A321912 . %e A321912 (3): 1 %e A321912 (21): 1 3 %e A321912 (111): 1 3 6 %e A321912 . %e A321912 (4): 1 %e A321912 (22): 1 2 6 %e A321912 (31): 1 4 %e A321912 (211): 2 1 5 12 %e A321912 (1111): 1 6 4 12 24 %e A321912 . %e A321912 (5): 1 %e A321912 (41): 1 5 %e A321912 (32): 1 3 10 %e A321912 (221): 1 5 2 12 30 %e A321912 (311): 2 1 7 20 %e A321912 (2111): 1 3 12 7 27 60 %e A321912 (11111): 1 5 10 30 20 60 20 %e A321912 For example, row 14 gives: e(32) = m(221) + 3m(2111) + 10m(11111). %Y A321912 This is a regrouping of the triangle A321742. %Y A321912 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321854, A321738, A321913-A321935. %K A321912 nonn,tabf %O A321912 1,5 %A A321912 _Gus Wiseman_, Nov 22 2018