cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321913 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

This page as a plain text file.
%I A321913 #4 Nov 22 2018 18:17:38
%S A321913 1,1,1,1,2,1,1,1,1,2,3,1,3,6,1,1,1,1,1,1,3,2,4,6,1,2,2,3,4,1,4,3,7,12,
%T A321913 1,6,4,12,24,1,1,1,1,1,1,1,1,2,2,3,3,4,5,1,2,3,5,4,7,10,1,3,5,11,8,18,
%U A321913 30,1,3,4,8,7,13,20,1,4,7,18,13,33,60,1,5
%N A321913 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
%C A321913 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321913 Also the coefficient of f(v) in e(u), where f is forgotten symmetric functions and e is elementary symmetric functions.
%H A321913 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321913 Tetrangle begins:
%e A321913   (1):  1
%e A321913 .
%e A321913   (2):   1  1
%e A321913   (11):  1  2
%e A321913 .
%e A321913   (3):    1  1  1
%e A321913   (21):   1  2  3
%e A321913   (111):  1  3  6
%e A321913 .
%e A321913   (4):     1  1  1  1  1
%e A321913   (22):    1  3  2  4  6
%e A321913   (31):    1  2  2  3  4
%e A321913   (211):   1  4  3  7 12
%e A321913   (1111):  1  6  4 12 24
%e A321913 .
%e A321913   (5):      1  1  1  1  1  1  1
%e A321913   (41):     1  2  2  3  3  4  5
%e A321913   (32):     1  2  3  5  4  7 10
%e A321913   (221):    1  3  5 11  8 18 30
%e A321913   (311):    1  3  4  8  7 13 20
%e A321913   (2111):   1  4  7 18 13 33 60
%e A321913   (11111):  1  5 10 30 20 60 20
%e A321913 For example, row 14 gives: h(32) = m(5) + 3m(32) + 2m(41) + 5m(221) + 4m(311) + 7m(2111) + 10m(11111).
%Y A321913 This is a regrouping of the triangle A321744.
%Y A321913 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A319191, A319193, A321912-A321935.
%K A321913 nonn,tabf
%O A321913 1,5
%A A321913 _Gus Wiseman_, Nov 22 2018