This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321913 #4 Nov 22 2018 18:17:38 %S A321913 1,1,1,1,2,1,1,1,1,2,3,1,3,6,1,1,1,1,1,1,3,2,4,6,1,2,2,3,4,1,4,3,7,12, %T A321913 1,6,4,12,24,1,1,1,1,1,1,1,1,2,2,3,3,4,5,1,2,3,5,4,7,10,1,3,5,11,8,18, %U A321913 30,1,3,4,8,7,13,20,1,4,7,18,13,33,60,1,5 %N A321913 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions. %C A321913 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321913 Also the coefficient of f(v) in e(u), where f is forgotten symmetric functions and e is elementary symmetric functions. %H A321913 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321913 Tetrangle begins: %e A321913 (1): 1 %e A321913 . %e A321913 (2): 1 1 %e A321913 (11): 1 2 %e A321913 . %e A321913 (3): 1 1 1 %e A321913 (21): 1 2 3 %e A321913 (111): 1 3 6 %e A321913 . %e A321913 (4): 1 1 1 1 1 %e A321913 (22): 1 3 2 4 6 %e A321913 (31): 1 2 2 3 4 %e A321913 (211): 1 4 3 7 12 %e A321913 (1111): 1 6 4 12 24 %e A321913 . %e A321913 (5): 1 1 1 1 1 1 1 %e A321913 (41): 1 2 2 3 3 4 5 %e A321913 (32): 1 2 3 5 4 7 10 %e A321913 (221): 1 3 5 11 8 18 30 %e A321913 (311): 1 3 4 8 7 13 20 %e A321913 (2111): 1 4 7 18 13 33 60 %e A321913 (11111): 1 5 10 30 20 60 20 %e A321913 For example, row 14 gives: h(32) = m(5) + 3m(32) + 2m(41) + 5m(221) + 4m(311) + 7m(2111) + 10m(11111). %Y A321913 This is a regrouping of the triangle A321744. %Y A321913 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A319191, A319193, A321912-A321935. %K A321913 nonn,tabf %O A321913 1,5 %A A321913 _Gus Wiseman_, Nov 22 2018