This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321914 #4 Nov 22 2018 18:17:44 %S A321914 1,-2,1,1,0,3,-3,1,-3,1,0,1,0,0,-4,2,4,-4,1,2,1,-2,0,0,4,-2,-1,1,0,-4, %T A321914 0,1,0,0,1,0,0,0,0,5,-5,-5,5,5,-5,1,-5,1,5,-3,-1,1,0,-5,5,-1,1,-2,0,0, %U A321914 5,-3,1,0,0,0,0,5,-1,-2,0,1,0,0,-5,1,0,0,0,0 %N A321914 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions. %C A321914 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321914 Also the coefficient of h(v) in f(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions. %H A321914 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321914 Tetrangle begins (zeroes not shown): %e A321914 (1): 1 %e A321914 . %e A321914 (2): -2 1 %e A321914 (11): 1 %e A321914 . %e A321914 (3): 3 -3 1 %e A321914 (21): -3 1 %e A321914 (111): 1 %e A321914 . %e A321914 (4): -4 2 4 -4 1 %e A321914 (22): 2 1 -2 %e A321914 (31): 4 -2 -1 1 %e A321914 (211): -4 1 %e A321914 (1111): 1 %e A321914 . %e A321914 (5): 5 -5 -5 5 5 -5 1 %e A321914 (41): -5 1 5 -3 -1 1 %e A321914 (32): -5 5 -1 1 -2 %e A321914 (221): 5 -3 1 %e A321914 (311): 5 -1 -2 1 %e A321914 (2111): -5 1 %e A321914 (11111): 1 %e A321914 For example, row 14 gives: m(32) = -5e(5) - e(32) + 5e(41) + e(221) - 2e(311). %Y A321914 This is a regrouping of the triangle A321746. %Y A321914 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321854, A321738, A321912-A321935. %K A321914 sign,tabf %O A321914 1,2 %A A321914 _Gus Wiseman_, Nov 22 2018