This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321915 #5 Nov 22 2018 18:17:51 %S A321915 1,2,-1,-1,1,3,-3,1,-3,5,-2,1,-2,1,4,-2,-4,4,-1,-2,3,2,-4,1,-4,2,7,-7, %T A321915 2,4,-4,-7,10,-3,-1,1,2,-3,1,5,-5,-5,5,5,-5,1,-5,9,5,-7,-9,9,-2,-5,5, %U A321915 11,-11,-8,10,-2,5,-7,-11,14,10,-14,3,5,-9,-8,10,12 %N A321915 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions. %C A321915 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321915 Also the coefficient of e(v) in f(u), where f is forgotten symmetric functions and e is elementary symmetric functions. %H A321915 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321915 Tetrangle begins: %e A321915 (1): 1 %e A321915 . %e A321915 (2): 2 -1 %e A321915 (11): -1 1 %e A321915 . %e A321915 (3): 3 -3 1 %e A321915 (21): -3 5 -2 %e A321915 (111): 1 -2 1 %e A321915 . %e A321915 (4): 4 -2 -4 4 -1 %e A321915 (22): -2 3 2 -4 1 %e A321915 (31): -4 2 7 -7 2 %e A321915 (211): 4 -4 -7 10 -3 %e A321915 (1111): -1 1 2 -3 1 %e A321915 . %e A321915 (5): 5 -5 -5 5 5 -5 1 %e A321915 (41): -5 9 5 -7 -9 9 -2 %e A321915 (32): -5 5 11 11 -8 10 -2 %e A321915 (221): 5 -7 11 14 10 14 3 %e A321915 (311): 5 -9 -8 10 12 13 3 %e A321915 (2111): -5 9 10 14 13 17 -4 %e A321915 (11111): 1 -2 -2 3 3 -4 1 %e A321915 For example, row 14 gives: m(32) = -5h(5) + 11h(32) + 5h(41) - 11h(221) - 8h(311) + 10h(2111) - 2h(11111). %Y A321915 This is a regrouping of the triangle A321748. Row sums are A155972. %Y A321915 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A319191, A319193, A321912-A321935. %K A321915 sign,tabf %O A321915 1,2 %A A321915 _Gus Wiseman_, Nov 22 2018