This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321916 #4 Nov 22 2018 18:17:58 %S A321916 1,-1,1,0,1,1,-2,1,0,-1,1,0,0,1,-1,1,2,-3,1,0,1,0,-2,1,0,0,1,-2,1,0,0, %T A321916 0,-1,1,0,0,0,0,1,1,-2,-2,3,3,-4,1,0,-1,0,1,2,-3,1,0,0,-1,2,1,-3,1,0, %U A321916 0,0,1,0,-2,1,0,0,0,0,1,-2,1,0,0,0,0,0,-1,1 %N A321916 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in h(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and h is homogeneous symmetric functions. %C A321916 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321916 Also the coefficient of h(v) in e(u). %H A321916 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321916 Tetrangle begins (zeroes not shown): %e A321916 (1): 1 %e A321916 . %e A321916 (2): -1 1 %e A321916 (11): 1 %e A321916 . %e A321916 (3): 1 -2 1 %e A321916 (21): -1 1 %e A321916 (111): 1 %e A321916 . %e A321916 (4): -1 1 2 -3 1 %e A321916 (22): 1 -2 1 %e A321916 (31): 1 -2 1 %e A321916 (211): -1 1 %e A321916 (1111): 1 %e A321916 . %e A321916 (5): 1 -2 -2 3 3 -4 1 %e A321916 (41): -1 1 2 -3 1 %e A321916 (32): -1 2 1 -3 1 %e A321916 (221): 1 -2 1 %e A321916 (311): 1 -2 1 %e A321916 (2111): -1 1 %e A321916 (11111): 1 %e A321916 For example, row 14 gives: h(32) = -e(32) + 2e(221) + e(311) - 3e(2111) + e(11111). %Y A321916 This is a regrouping of the triangle A321749. Row sums are A134286. %Y A321916 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321916 sign,tabf %O A321916 1,7 %A A321916 _Gus Wiseman_, Nov 22 2018