This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321917 #4 Nov 22 2018 18:18:05 %S A321917 1,1,0,1,2,1,0,0,1,1,0,1,3,6,1,0,0,0,0,1,2,0,0,0,1,0,1,0,0,1,2,2,2,0, %T A321917 1,6,4,12,24,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1,2,2,0,0,0, %U A321917 1,2,1,0,2,0,0,1,3,4,6,6,6,0,1,5,10,30 %N A321917 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in p(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions. %C A321917 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321917 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321917 Tetrangle begins (zeroes not shown): %e A321917 (1): 1 %e A321917 . %e A321917 (2): 1 %e A321917 (11): 1 2 %e A321917 . %e A321917 (3): 1 %e A321917 (21): 1 1 %e A321917 (111): 1 3 6 %e A321917 . %e A321917 (4): 1 %e A321917 (22): 1 2 %e A321917 (31): 1 1 %e A321917 (211): 1 2 2 2 %e A321917 (1111): 1 6 4 12 24 %e A321917 . %e A321917 (5): 1 %e A321917 (41): 1 1 %e A321917 (32): 1 1 %e A321917 (221): 1 1 2 2 %e A321917 (311): 1 2 1 2 %e A321917 (2111): 1 3 4 6 6 6 %e A321917 (11111): 1 5 10 30 20 60 20 %e A321917 For example, row 14 gives: p(32) = m(5) + m(32). %Y A321917 This is a regrouping of the triangle A321750. %Y A321917 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A319191, A319193, A321912-A321935. %K A321917 nonn,tabf %O A321917 1,5 %A A321917 _Gus Wiseman_, Nov 22 2018