cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321917 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in p(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.

This page as a plain text file.
%I A321917 #4 Nov 22 2018 18:18:05
%S A321917 1,1,0,1,2,1,0,0,1,1,0,1,3,6,1,0,0,0,0,1,2,0,0,0,1,0,1,0,0,1,2,2,2,0,
%T A321917 1,6,4,12,24,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1,2,2,0,0,0,
%U A321917 1,2,1,0,2,0,0,1,3,4,6,6,6,0,1,5,10,30
%N A321917 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in p(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.
%C A321917 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321917 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321917 Tetrangle begins (zeroes not shown):
%e A321917   (1):  1
%e A321917 .
%e A321917   (2):   1
%e A321917   (11):  1  2
%e A321917 .
%e A321917   (3):    1
%e A321917   (21):   1  1
%e A321917   (111):  1  3  6
%e A321917 .
%e A321917   (4):     1
%e A321917   (22):    1  2
%e A321917   (31):    1     1
%e A321917   (211):   1  2  2  2
%e A321917   (1111):  1  6  4 12 24
%e A321917 .
%e A321917   (5):      1
%e A321917   (41):     1  1
%e A321917   (32):     1     1
%e A321917   (221):    1  1  2  2
%e A321917   (311):    1  2  1     2
%e A321917   (2111):   1  3  4  6  6  6
%e A321917   (11111):  1  5 10 30 20 60 20
%e A321917 For example, row 14 gives: p(32) = m(5) + m(32).
%Y A321917 This is a regrouping of the triangle A321750.
%Y A321917 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A319191, A319193, A321912-A321935.
%K A321917 nonn,tabf
%O A321917 1,5
%A A321917 _Gus Wiseman_, Nov 22 2018