This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321918 #4 Nov 22 2018 18:18:13 %S A321918 1,-2,1,0,1,3,-3,1,0,-2,1,0,0,1,-4,2,4,-4,1,0,4,0,-4,1,0,0,3,-3,1,0,0, %T A321918 0,-2,1,0,0,0,0,1,5,-5,-5,5,5,-5,1,0,-4,0,2,4,-4,1,0,0,-6,6,3,-5,1,0, %U A321918 0,0,4,0,-4,1,0,0,0,0,3,-3,1,0,0,0,0,0,-2,1 %N A321918 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in p(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions. %C A321918 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321918 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321918 Tetrangle begins (zeroes not shown): %e A321918 (1): 1 %e A321918 . %e A321918 (2): -2 1 %e A321918 (11): 1 %e A321918 . %e A321918 (3): 3 -3 1 %e A321918 (21): -2 1 %e A321918 (111): 1 %e A321918 . %e A321918 (4): -4 2 4 -4 1 %e A321918 (22): 4 -4 1 %e A321918 (31): 3 -3 1 %e A321918 (211): -2 1 %e A321918 (1111): 1 %e A321918 . %e A321918 (5): 5 -5 -5 5 5 -5 1 %e A321918 (41): -4 2 4 -4 1 %e A321918 (32): -6 6 3 -5 1 %e A321918 (221): 4 -4 1 %e A321918 (311): 3 -3 1 %e A321918 (2111): -2 1 %e A321918 (11111): 1 %e A321918 For example, row 14 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111). %Y A321918 This is a regrouping of the triangle A321752. %Y A321918 Cf. A005651, A008480, A056239, A124794, A124795, A135278, A215366, A318284, A319191, A319193, A319225, A319226, A321912-A321935. %K A321918 sign,tabf %O A321918 1,2 %A A321918 _Gus Wiseman_, Nov 22 2018