This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321919 #4 Nov 22 2018 18:18:20 %S A321919 1,2,-1,0,1,3,-3,1,0,2,-1,0,0,1,4,-2,-4,4,-1,0,4,0,-4,1,0,0,3,-3,1,0, %T A321919 0,0,2,-1,0,0,0,0,1,5,-5,-5,5,5,-5,1,0,4,0,-2,-4,4,-1,0,0,6,-6,-3,5, %U A321919 -1,0,0,0,4,0,-4,1,0,0,0,0,3,-3,1,0,0,0,0,0,2 %N A321919 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in p(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and p is power sum symmetric functions. %C A321919 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321919 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321919 Tetrangle begins (zeroes not shown): %e A321919 (1): 1 %e A321919 . %e A321919 (2): 2 -1 %e A321919 (11): 1 %e A321919 . %e A321919 (3): 3 -3 1 %e A321919 (21): 2 -1 %e A321919 (111): 1 %e A321919 . %e A321919 (4): 4 -2 -4 4 -1 %e A321919 (22): 4 -4 1 %e A321919 (31): 3 -3 1 %e A321919 (211): 2 -1 %e A321919 (1111): 1 %e A321919 . %e A321919 (5): 5 -5 -5 5 5 -5 1 %e A321919 (41): 4 -2 -4 4 -1 %e A321919 (32): 6 -6 -3 5 -1 %e A321919 (221): 4 -4 1 %e A321919 (311): 3 -3 1 %e A321919 (2111): 2 -1 %e A321919 (11111): 1 %e A321919 For example, row 14 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111). %Y A321919 This is a regrouping of the triangle A321754. %Y A321919 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321919 sign,tabf %O A321919 1,2 %A A321919 _Gus Wiseman_, Nov 22 2018