This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321920 #5 Nov 23 2018 07:58:48 %S A321920 1,-1,1,1,0,1,-2,1,-1,1,0,1,0,0,-1,1,2,-3,1,0,1,-1,0,0,1,-1,-1,1,0,-1, %T A321920 0,1,0,0,1,0,0,0,0,1,-2,-2,3,3,-4,1,-1,1,2,-2,-1,1,0,0,1,-1,1,-1,0,0, %U A321920 0,-1,1,0,0,0,0,1,-1,-1,0,1,0,0,-1,1,0,0,0,0 %N A321920 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in s(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and s is Schur functions. %C A321920 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321920 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321920 Tetrangle begins (zeroes not shown): %e A321920 (1): 1 %e A321920 . %e A321920 (2): -1 1 %e A321920 (11): 1 %e A321920 . %e A321920 (3): 1 -2 1 %e A321920 (21): -1 1 %e A321920 (111): 1 %e A321920 . %e A321920 (4): -1 1 2 -3 1 %e A321920 (22): 1 -1 %e A321920 (31): 1 -1 -1 1 %e A321920 (211): -1 1 %e A321920 (1111): 1 %e A321920 . %e A321920 (5): 1 -2 -2 3 3 -4 1 %e A321920 (41): -1 1 2 -2 -1 1 %e A321920 (32): 1 -1 1 -1 %e A321920 (221): -1 1 %e A321920 (311): 1 -1 -1 1 %e A321920 (2111): -1 1 %e A321920 (11111): 1 %e A321920 For example, row 14 gives: s(32) = -e(32) + e(41) + e(221) - e(311). %Y A321920 Row sums are A134286. This is a regrouping of the triangle A321755. %Y A321920 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. %K A321920 sign,tabf %O A321920 1,7 %A A321920 _Gus Wiseman_, Nov 22 2018