cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321920 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in s(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and s is Schur functions.

This page as a plain text file.
%I A321920 #5 Nov 23 2018 07:58:48
%S A321920 1,-1,1,1,0,1,-2,1,-1,1,0,1,0,0,-1,1,2,-3,1,0,1,-1,0,0,1,-1,-1,1,0,-1,
%T A321920 0,1,0,0,1,0,0,0,0,1,-2,-2,3,3,-4,1,-1,1,2,-2,-1,1,0,0,1,-1,1,-1,0,0,
%U A321920 0,-1,1,0,0,0,0,1,-1,-1,0,1,0,0,-1,1,0,0,0,0
%N A321920 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in s(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and s is Schur functions.
%C A321920 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321920 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321920 Tetrangle begins (zeroes not shown):
%e A321920   (1):  1
%e A321920 .
%e A321920   (2):  -1  1
%e A321920   (11):  1
%e A321920 .
%e A321920   (3):    1 -2  1
%e A321920   (21):  -1  1
%e A321920   (111):  1
%e A321920 .
%e A321920   (4):    -1  1  2 -3  1
%e A321920   (22):       1 -1
%e A321920   (31):    1 -1 -1  1
%e A321920   (211):  -1     1
%e A321920   (1111):  1
%e A321920 .
%e A321920   (5):      1 -2 -2  3  3 -4  1
%e A321920   (41):    -1  1  2 -2 -1  1
%e A321920   (32):        1 -1  1 -1
%e A321920   (221):      -1  1
%e A321920   (311):    1 -1 -1     1
%e A321920   (2111):  -1  1
%e A321920   (11111):  1
%e A321920 For example, row 14 gives: s(32) = -e(32) + e(41) + e(221) - e(311).
%Y A321920 Row sums are A134286. This is a regrouping of the triangle A321755.
%Y A321920 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935.
%K A321920 sign,tabf
%O A321920 1,7
%A A321920 _Gus Wiseman_, Nov 22 2018