cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321922 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in s(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions.

This page as a plain text file.
%I A321922 #4 Nov 23 2018 07:59:05
%S A321922 1,1,0,-1,1,1,0,0,-1,1,0,1,-2,1,1,0,0,0,0,0,1,-1,0,0,-1,0,1,0,0,1,-1,
%T A321922 -1,1,0,-1,1,2,-3,1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,1,
%U A321922 -1,1,-1,0,0,1,-1,-1,0,1,0,0,-1,1,2,-2,-1,1,0
%N A321922 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in s(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions.
%C A321922 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321922 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321922 Tetrangle begins (zeroes not shown):
%e A321922   (1):  1
%e A321922 .
%e A321922   (2):   1
%e A321922   (11): -1  1
%e A321922 .
%e A321922   (3):    1
%e A321922   (21):  -1  1
%e A321922   (111):  1 -2  1
%e A321922 .
%e A321922   (4):     1
%e A321922   (22):       1 -1
%e A321922   (31):   -1     1
%e A321922   (211):   1 -1 -1  1
%e A321922   (1111): -1  1  2 -3  1
%e A321922 .
%e A321922   (5):      1
%e A321922   (41):    -1  1
%e A321922   (32):       -1  1
%e A321922   (221):       1 -1  1 -1
%e A321922   (311):    1 -1 -1     1
%e A321922   (2111):  -1  1  2 -2 -1  1
%e A321922   (11111):  1 -2 -2  3  3 -4  1
%e A321922 For example, row 14 gives: s(32) = h(32) - h(41).
%Y A321922 Row sums are A155972. This is a regrouping of the triangle A321758.
%Y A321922 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935.
%K A321922 sign,tabf
%O A321922 1,13
%A A321922 _Gus Wiseman_, Nov 22 2018