This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321922 #4 Nov 23 2018 07:59:05 %S A321922 1,1,0,-1,1,1,0,0,-1,1,0,1,-2,1,1,0,0,0,0,0,1,-1,0,0,-1,0,1,0,0,1,-1, %T A321922 -1,1,0,-1,1,2,-3,1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,1, %U A321922 -1,1,-1,0,0,1,-1,-1,0,1,0,0,-1,1,2,-2,-1,1,0 %N A321922 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in s(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and s is Schur functions. %C A321922 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321922 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321922 Tetrangle begins (zeroes not shown): %e A321922 (1): 1 %e A321922 . %e A321922 (2): 1 %e A321922 (11): -1 1 %e A321922 . %e A321922 (3): 1 %e A321922 (21): -1 1 %e A321922 (111): 1 -2 1 %e A321922 . %e A321922 (4): 1 %e A321922 (22): 1 -1 %e A321922 (31): -1 1 %e A321922 (211): 1 -1 -1 1 %e A321922 (1111): -1 1 2 -3 1 %e A321922 . %e A321922 (5): 1 %e A321922 (41): -1 1 %e A321922 (32): -1 1 %e A321922 (221): 1 -1 1 -1 %e A321922 (311): 1 -1 -1 1 %e A321922 (2111): -1 1 2 -2 -1 1 %e A321922 (11111): 1 -2 -2 3 3 -4 1 %e A321922 For example, row 14 gives: s(32) = h(32) - h(41). %Y A321922 Row sums are A155972. This is a regrouping of the triangle A321758. %Y A321922 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. %K A321922 sign,tabf %O A321922 1,13 %A A321922 _Gus Wiseman_, Nov 22 2018