This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321924 #4 Nov 23 2018 07:59:18 %S A321924 1,1,1,0,1,1,1,1,0,1,2,0,0,1,1,1,1,1,1,0,1,0,1,2,0,1,1,2,3,0,0,0,1,3, %T A321924 0,0,0,0,1,1,1,1,1,1,1,1,0,1,1,2,2,3,4,0,0,1,2,1,3,5,0,0,0,1,0,2,5,0, %U A321924 0,0,1,1,3,6,0,0,0,0,0,1,4,0,0,0,0,0,0 %N A321924 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in s(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and s is Schur functions. %C A321924 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321924 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321924 Tetrangle begins (zeroes not shown): %e A321924 (1): 1 %e A321924 . %e A321924 (2): 1 1 %e A321924 (11): 1 %e A321924 . %e A321924 (3): 1 1 1 %e A321924 (21): 1 2 %e A321924 (111): 1 %e A321924 . %e A321924 (4): 1 1 1 1 1 %e A321924 (22): 1 1 2 %e A321924 (31): 1 1 2 3 %e A321924 (211): 1 3 %e A321924 (1111): 1 %e A321924 . %e A321924 (5): 1 1 1 1 1 1 1 %e A321924 (41): 1 1 2 2 3 4 %e A321924 (32): 1 2 1 3 5 %e A321924 (221): 1 2 5 %e A321924 (311): 1 1 3 6 %e A321924 (2111): 1 4 %e A321924 (11111): 1 %e A321924 For example, row 14 gives: s(32) = m(32) + 2m(221) + m(311) + 3m(2111) + 5m(11111). %Y A321924 This is a regrouping of the triangle A321761. %Y A321924 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. %K A321924 nonn,tabf %O A321924 1,11 %A A321924 _Gus Wiseman_, Nov 22 2018