This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321925 #4 Nov 23 2018 07:59:26 %S A321925 1,1,-1,0,1,1,-1,1,0,1,-2,0,0,1,1,0,-1,1,-1,0,1,0,-1,1,0,-1,1,-1,2,0, %T A321925 0,0,1,-3,0,0,0,0,1,1,-1,0,0,1,-1,1,0,1,-1,1,-1,1,-2,0,0,1,-1,-1,2,-2, %U A321925 0,0,0,1,0,-2,3,0,0,0,-1,1,-1,3,0,0,0,0,0,1 %N A321925 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in m(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and m is monomial symmetric functions. %C A321925 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321925 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321925 Tetrangle begins (zeroes not shown): %e A321925 (1): 1 %e A321925 . %e A321925 (2): 1 -1 %e A321925 (11): 1 %e A321925 . %e A321925 (3): 1 -1 1 %e A321925 (21): 1 -2 %e A321925 (111): 1 %e A321925 . %e A321925 (4): 1 -1 1 -1 %e A321925 (22): 1 -1 1 %e A321925 (31): -1 1 -1 2 %e A321925 (211): 1 -3 %e A321925 (1111): 1 %e A321925 . %e A321925 (5): 1 -1 1 -1 1 %e A321925 (41): 1 -1 1 -1 1 -2 %e A321925 (32): 1 -1 -1 2 -2 %e A321925 (221): 1 -2 3 %e A321925 (311): -1 1 -1 3 %e A321925 (2111): 1 -4 %e A321925 (11111): 1 %e A321925 For example, row 14 gives: m(32) = s(32) - s(221) - s(311) + 2s(2111) - 2s(11111). %Y A321925 This is a regrouping of the triangle A321763. %Y A321925 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. %K A321925 sign,tabf %O A321925 1,11 %A A321925 _Gus Wiseman_, Nov 22 2018