This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321926 #4 Nov 23 2018 07:59:33 %S A321926 1,1,-1,1,1,1,-1,1,1,0,-1,1,2,1,1,0,-1,1,-1,1,2,-1,-1,1,1,-1,0,0,1,1, %T A321926 0,1,-1,-1,1,2,3,3,1,1,-1,0,0,1,-1,1,1,0,-1,1,0,0,-1,1,-1,1,-1,0,1,-1, %U A321926 1,0,1,1,-2,0,1,1,1,-1,-1,0,1,1,1,2,1,-1,0,-2 %N A321926 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in p(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and p is power sum symmetric functions. %C A321926 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321926 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321926 Tetrangle begins (zeroes not shown): %e A321926 (1): 1 %e A321926 . %e A321926 (2): 1 -1 %e A321926 (11): 1 1 %e A321926 . %e A321926 (3): 1 -1 1 %e A321926 (21): 1 -1 %e A321926 (111): 1 2 1 %e A321926 . %e A321926 (4): 1 -1 1 -1 %e A321926 (22): 1 2 -1 -1 1 %e A321926 (31): 1 -1 1 %e A321926 (211): 1 1 -1 -1 %e A321926 (1111): 1 2 3 3 1 %e A321926 . %e A321926 (5): 1 -1 1 -1 1 %e A321926 (41): 1 -1 1 -1 %e A321926 (32): 1 -1 1 -1 1 -1 %e A321926 (221): 1 1 1 -2 1 %e A321926 (311): 1 1 -1 -1 1 1 %e A321926 (2111): 1 2 1 -1 -2 -1 %e A321926 (11111): 1 4 5 5 6 4 1 %e A321926 For example, row 14 gives: p(32) = s(5) + s(32) - s(41) - s(221) + s(2111) - s(11111). %Y A321926 Row sums are A317552. This is a regrouping of the triangle A321765. %Y A321926 Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. %K A321926 sign,tabf %O A321926 1,13 %A A321926 _Gus Wiseman_, Nov 22 2018