This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321927 #4 Nov 23 2018 07:59:40 %S A321927 1,-1,0,1,1,1,0,0,-2,-1,0,1,1,1,-1,0,0,0,0,1,1,0,0,0,2,0,1,0,0,-3,-2, %T A321927 -2,-1,0,1,1,1,1,1,1,0,0,0,0,0,0,-2,-1,0,0,0,0,0,-2,0,-1,0,0,0,0,3,1, %U A321927 2,1,0,0,0,3,2,1,0,1,0,0,-4,-3,-3,-2,-2,-1,0 %N A321927 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in f(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and f is forgotten symmetric functions. %C A321927 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321927 Also the coefficient of f(v) in m(u). %H A321927 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321927 Tetrangle begins (zeroes not shown): %e A321927 (1): 1 %e A321927 . %e A321927 (2): -1 %e A321927 (11): 1 1 %e A321927 . %e A321927 (3): 1 %e A321927 (21): -2 -1 %e A321927 (111): 1 1 1 %e A321927 . %e A321927 (4): -1 %e A321927 (22): 1 1 %e A321927 (31): 2 1 %e A321927 (211): -3 -2 -2 -1 %e A321927 (1111): 1 1 1 1 1 %e A321927 . %e A321927 (5): 1 %e A321927 (41): -2 -1 %e A321927 (32): -2 -1 %e A321927 (221): 3 1 2 1 %e A321927 (311): 3 2 1 1 %e A321927 (2111): -4 -3 -3 -2 -2 -1 %e A321927 (11111): 1 1 1 1 1 1 1 %e A321927 For example, row 14 gives: f(32) = -2m(5) - m(32). %Y A321927 This is a regrouping of the triangle A321886. %Y A321927 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321927 sign,tabf %O A321927 1,9 %A A321927 _Gus Wiseman_, Nov 22 2018