This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321928 #4 Nov 23 2018 07:59:48 %S A321928 1,-1,0,1,2,1,0,0,-1,-1,0,1,3,6,-1,0,0,0,0,1,2,0,0,0,1,0,1,0,0,-1,-2, %T A321928 -2,-2,0,1,6,4,12,24,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,-1,0,-1,0,0,0,0,1, %U A321928 1,2,2,0,0,0,1,2,1,0,2,0,0,-1,-3,-4,-6,-6,-6 %N A321928 Tetrangle where T(n,H(u),H(v)) is the coefficient of f(v) in p(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and p is power sum symmetric functions. %C A321928 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321928 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321928 Tetrangle begins (zeroes not shown): %e A321928 (1): 1 %e A321928 . %e A321928 (2): -1 %e A321928 (11): 1 2 %e A321928 . %e A321928 (3): 1 %e A321928 (21): -1 -1 %e A321928 (111): 1 3 6 %e A321928 . %e A321928 (4): -1 %e A321928 (22): 1 2 %e A321928 (31): 1 1 %e A321928 (211): -1 -2 -2 -2 %e A321928 (1111): 1 6 4 12 24 %e A321928 . %e A321928 (5): 1 %e A321928 (41): -1 -1 %e A321928 (32): -1 -1 %e A321928 (221): 1 1 2 2 %e A321928 (311): 1 2 1 2 %e A321928 (2111): -1 -3 -4 -6 -6 -6 %e A321928 (11111): 1 5 10 30 20 60 20 %e A321928 For example, row 14 gives: p(32) = -f(5) - f(32). %Y A321928 An unsigned version is A321917. This is a regrouping of the triangle A321888. %Y A321928 Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321928 sign,tabf %O A321928 1,5 %A A321928 _Gus Wiseman_, Nov 22 2018