cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321930 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in f(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and s is Schur functions.

This page as a plain text file.
%I A321930 #6 Nov 23 2018 21:13:25
%S A321930 1,-1,1,1,0,1,-1,1,-2,1,0,1,0,0,-1,0,1,-1,1,1,1,-1,0,0,2,-1,-1,1,0,-3,
%T A321930 0,1,0,0,1,0,0,0,0,1,-1,0,0,1,-1,1,-2,1,1,-1,-1,1,0,-2,2,-1,1,-1,0,0,
%U A321930 3,-2,1,0,0,0,0,3,-1,-1,0,1,0,0,-4,1,0,0,0,0
%N A321930 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in f(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and s is Schur functions.
%C A321930 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321930 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321930 Tetrangle begins (zeros not shown):
%e A321930   (1):  1
%e A321930 .
%e A321930   (2):  -1  1
%e A321930   (11):  1
%e A321930 .
%e A321930   (3):    1 -1  1
%e A321930   (21):  -2  1
%e A321930   (111):  1
%e A321930 .
%e A321930   (4):    -1     1 -1  1
%e A321930   (22):    1  1 -1
%e A321930   (31):    2 -1 -1  1
%e A321930   (211):  -3     1
%e A321930   (1111):  1
%e A321930 .
%e A321930   (5):      1 -1        1 -1  1
%e A321930   (41):    -2  1  1 -1 -1  1
%e A321930   (32):    -2  2 -1  1 -1
%e A321930   (221):    3 -2  1
%e A321930   (311):    3 -1 -1     1
%e A321930   (2111):  -4  1
%e A321930   (11111):  1
%e A321930 For example, row 14 gives: f(32) = -2s(5) - s(32) + 2s(41) + s(221) - s(311).
%Y A321930 This is a regrouping of the triangle A321894.
%Y A321930 Cf. A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935.
%K A321930 sign,tabf
%O A321930 1,9
%A A321930 _Gus Wiseman_, Nov 23 2018