This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321930 #6 Nov 23 2018 21:13:25 %S A321930 1,-1,1,1,0,1,-1,1,-2,1,0,1,0,0,-1,0,1,-1,1,1,1,-1,0,0,2,-1,-1,1,0,-3, %T A321930 0,1,0,0,1,0,0,0,0,1,-1,0,0,1,-1,1,-2,1,1,-1,-1,1,0,-2,2,-1,1,-1,0,0, %U A321930 3,-2,1,0,0,0,0,3,-1,-1,0,1,0,0,-4,1,0,0,0,0 %N A321930 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in f(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and s is Schur functions. %C A321930 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321930 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321930 Tetrangle begins (zeros not shown): %e A321930 (1): 1 %e A321930 . %e A321930 (2): -1 1 %e A321930 (11): 1 %e A321930 . %e A321930 (3): 1 -1 1 %e A321930 (21): -2 1 %e A321930 (111): 1 %e A321930 . %e A321930 (4): -1 1 -1 1 %e A321930 (22): 1 1 -1 %e A321930 (31): 2 -1 -1 1 %e A321930 (211): -3 1 %e A321930 (1111): 1 %e A321930 . %e A321930 (5): 1 -1 1 -1 1 %e A321930 (41): -2 1 1 -1 -1 1 %e A321930 (32): -2 2 -1 1 -1 %e A321930 (221): 3 -2 1 %e A321930 (311): 3 -1 -1 1 %e A321930 (2111): -4 1 %e A321930 (11111): 1 %e A321930 For example, row 14 gives: f(32) = -2s(5) - s(32) + 2s(41) + s(221) - s(311). %Y A321930 This is a regrouping of the triangle A321894. %Y A321930 Cf. A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. %K A321930 sign,tabf %O A321930 1,9 %A A321930 _Gus Wiseman_, Nov 23 2018